Glide at Static Pressure

We've been pretty spoiled in residential and light commercial in the USA because we haven't needed to deal with glide much. R22 has no glide and R410a is a near-azeotropic blend which means it has almost no glide.

The days of being able to ignore glide are coming to an end.

Carrier has announced their replacement for R-410a will be R-454b which they will call “Puron Advanced” which still has very little glide (only 0.2°F), but many of the other options (like R-407c shown above) have a rather severe glide.

Glide comes down to the fact that some blended refrigerants boil and condense over a range of temperatures rather than at a single pressure/temperature point.

The point at which it is fully liquid before subcooling (or the point of the very first bubble in the liquid) we call bubble point and we use the bubble point to calculate subcooling.

The point when the mixture becomes fully vapor before superheating (or the first drop of liquid dew in a vapor) we call the dew point and we use it for calculating superheat.

Zeotropic blends (blends with glide) have several impacts on the system, but the one we notice most is in the evaporator. When blend with glide enters the evaporator coil, it will start by boiling at a lower temperature, and as it moves through the coil, the refrigerant temperature will increase until it hits the dew point before it starts to superheat. This means that neither the dew or the bubble temperature is REALLY the evaporator temperature, the true effective evaporator temperature is somewhere in the middle, we call this the mid-point.

Because some of the refrigerant flashes off right at the start of the evaporator the effective midpoint isn't really the middle between the dew and bubble, it tilts more towards the dew and Emerson recommends a more accurate estimate would account for that “inlet quality.” So merely multiply bubble by 0.40, dew by
0.60 and add the two together to get a more accurate evaporator midpoint.

But let's say you connect to a system that is off or connect gauges to a tank and want to know for sure that that refrigerant you think is in the tank or system is what you think it is?

Do you use bubble, dew or mid-point for static pressure?

The answer is you use bubble. Now I've not had anyone fully explain why to me but it stands to reason in my head that in the static state the majority of the refrigerant mass in the system (or tank) is in the liquid state and since it is neither in the process of boiling or condensing then it would be at the bubble point. That's probably a very unscientific way of thinking about it, but it's what I've got for now.

— Bryan

P.S. – Totally unrelated but my friend Andy Holt is putting on a Soft Skills training “camp out” seminar in Orlando starting on 4/1/19, and I will be stopping by to do some technical training as well. Follow THIS LINK to learn more.


Related Tech Tips

Sensible Heat in Air and Water
Here is another great explanation from Michael Housh from Housh Home Energy in Ohio.Thanks Michael! I’m going to layout and compare the Sensible Heat Rate equations for both the air-side and water-side of HVAC, to help draw similarities and dive deeper into the science behind these equations.  This is the beginning of a series to […]
Read more
Vacuum Pump Oil
This article is written by Sal Hamidi, founder of, an innovative manufacturers representative agency that promotes great HVAC/R products through training and media. You can reach Sal at   If we are going to discuss vacuum pump oil it's important to understand what it is first. Most HVAC application vacuum pumps are rotary […]
Read more
First Law of Thermodynamics
The first law of thermodynamics is an extension of the law of energy conservation. The latter states that energy can be neither created nor destroyed but converts from one form to another. Thermodynamics is the study of heat’s relationship with mechanical work, and it establishes heat as a form of energy that can be neither […]
Read more

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.


To continue you need to agree to our terms.

en English