Why is the Breaker Tripping?


Breakers are designed to trip anytime the circuit draws a current above the rating for a period of time. The time the breaker takes to trip is a function of how high the circuit amperage in comparison to the breaker rating. 

The higher the amperage above the rating the faster the breaker will trip

Breakers can accomplish this either thermally, by tripping on increased heat or inductively, by tripping on increased magnetic field when amperage increases.

The majority of residential circuit breakers are thermal which means they are more prone to trip during high ambient temperature than during low ambient temperature. This is one factor in why you will receive more nuisance or intermittent breaker tripping calls on a hot Summer day.

Many times breakers get replaced just for doing their job and tripping when they should. 

There are five common causes of breaker tripping. Improper circuit design, Overload, ground fault, leg to leg short and breaker issues 

Improper Circuit Design

Improper circuit design can result in an overload condition when the circuit ampacity (amperage capacity) or the circuit breaker size is not properly matched to the load to begin with and / or someone added additional load to the circuit later on. 

For HVAC equipment this means that the circuit size should be matched to to MCA (Minimum Circuit Ampacity) and the circuit breaker or fuse should be matched to the MOCP (Maximum Overcurrent Protection)

If the conductor is smaller than the MCA rating or the breaker is smaller than the MOCP rating It can result in a tripping breaker. 

You will also see cases where more than one system will be connected to one circuit breaker which is incorrect unless the systems have additional, independent overcurrent protection.

These issues usually causes an intermittent trip as it takes time under load to show up depending on the severity of the issue.

Overload

An overload condition occurs when the loads draw more current / do more more work than they are designed for. Common overload conditions would be a compressors locking up, motor bearings binding, blower belts too tight or sheaves adjusted improperly. And overload generally occurs with inductive (magnetic) loads like motors in cases where the motor is either being placed under a greater torque load than it’s designed for or the motor itself is beginning to fail mechanically.

Overload conditions often don’t trip a breaker because the motor itself will usually have an overload that specifically protects the motor. This is why when a compressor is locked it is much more likely to shut off on thermal overload than it is to trip a breaker even though it will draw far higher amps than the breaker rating on startup. In these cases the thermal overload is designed to respond quicker than the breaker.

If a breaker is tripping because of an overload condition it will usually be after several seconds, minutes or even hours of operation. It will not be “instantaneous” unless someone installed the wrong breaker or fuse and used an “instantaneous trip” instead of a typical “slow blow” or slow acting type. This would be quite rare.


Ground Fault

A ground fault is a short circuit (no load path) between an energized circuit and equipment ground. 

A ground fault is the most common cause of instantaneous breaker tripping

In most ground fault situations there will be very amperage, very quickly resulting in a breaker that trips right away.

Common cases would a shorted motor, such as a shorted compressor or a rubbed out wire.

A combination of visual inspection, isolation and ohm measurement to ground and megaohm / hi-pot tests or hot verification as needed is the best way to diagnose a short to ground (ground fault).

Leg to Leg Short (Bucking Phases)

When you have two legs of power that have different sine wave patterns such a 240V single phase or 3 phase power you must prevent the legs from coming into contact except through a load. 

If they do come in contact there will be an enormous transfer of energy and a significant arc. 

This can happen when two wires rub out, when switch gear becomes compromised or within a motor.


Many times techs will look for short circuits from “leg to leg” or “winding to winding” in a compressor or a motor without first measuring to ground. 

This is not a good idea
Even when a motor does short “winding to winding” it is rare that it just stays shorted. Usually it will ALSO be shorted to ground or it will be open after the arc flash that resulted from the short.


Think of a circuit board. Circuit boards short out all the time and the result is a big black spot on the board and nothing works anymore (open). It rarely results in a continued short circuit because the arc from the short blew the connection apart.

The reason I encourage caution is because I have seen many junior techs condemn good compressors due to a “leg to leg” short just because the ohm reading between Run and Common appeared low to them.

The only way to know if a single phase compressor is shorted “leg to leg”  with an ohmmeter is to know what the windings should read in the first place.

On a three phase motor all three legs should read the same ohms leg to leg which makes it considerably easier.

When you do encounter leg to leg (only) short circuits it is more often on fan motors than on compressors.

Breaker Issues

Because most breakers trip due to heat, anything that causes the breaker to get hotter than normal can result in tripping. 

This can be due to a poor connection inside the breaker itself, but often it is due to a poor wire connection on the breaker or a poor connection between the breaker and the bus bar.

Usually these types of breaker issues are caused by installation problems such as loose connection, wrong breaker type, failure to use anti-oxidation paste on alum to copper or excessive tripping / using the breaker as a switch. 

Here are some tips for diagnosing a tripping breaker 

Tripping instantly

  • Perform a visual inspection of all wires and connections. Look for signs of rubout, damage and arcing
  • Isolate components and ohm to ground
  • If you are unable to locate with an ohmmeter use a megohmmeter to ground (with caution especially on scroll compressors)
  • Finally, once you believe you have identified the cause, fully disconnnect the shorted component and power the unit back up and make sure everything else functions.

Tripping intermittently or after more than 3 seconds

  • Visually inspect all electrical connections and ensure they are clean and tight.
  • Inspect the breaker and bus bar connections
  • Check breaker and wiring size
  • Measure running voltage and ensure it is within +/- 10% rating 
  • Measure for voltage drop during startup (less than 15%) as well as between the power source and right at the unit (less than 5%)
  • Measure component amperages while starting and running and compare to manufacturer specs
  • Measure motor and compressor temperatures and watch for temperature increase over time. Infrared and thermal imaging can assist with this
  • Watch for anything that can cause overload such as failing bearings, belts too tight, or sheaves adjusted for too much RPM 
  • Measure current right at the breaker, if it remains below the breaker rating and the breaker STILL TRIPS, only then replace the breaker.

Don’t replace a breaker unless you know it’s failed and don’t condemn a part as being shorted unless you can isolate it out of the circuit and every other component still functions (as possible)

— Bryan

One comment

  1. JOSELITO C. OBILLO says:

    Thank you for this Boss..this help me through my everyday works..well a means of reminders..
    I will file this.
    Thank You Again.

    Joselito C. Obillo

Leave a Reply

Scroll to top
Translate »

Daily Tech Tip

Subscribe to our daily tech tip to receive daily tips and advice!
Email address
Name