CO2 Booster Systems (Codenamed CO2 is Interesting and Weird)

 

Illustration Courtesy of Emerson

CO2 is a pretty nice refrigerant.

It has zero ODP (ozone depletion potential) and a GWP (global warming potential) of 1. CO2  has been used as a refrigerant almost from the very beginning of refrigerants, and it's been making a big comeback in market refrigeration (especially in colder climates).

CO2 (R744) is naturally better suited for lower temperature refrigeration applications because of its low-temperature saturated state at atmospheric pressure (-109.3F). You will notice I said “saturated state” because CO2 does not “boil” at atmospheric pressure. At any pressure below 60 PSIG, CO2 goes straight from solid (dry ice) right to a vapor. That is why 60 PSIG is known as the “triple point,” or the point where CO2 could be either solid, liquid, or vapor. (For more on saturated state and what that means for technicians, check out this article here.)

Now, go to the top of the range with CO2. When you apply 1055 PSIG, the saturation temperature is 87.8°F, but go up even 1 more degree, and CO2 CANNOT be liquified. This point is known as the critical point of the substance. Whenever a substance is forced beyond its critical point, it becomes what is known as a supercritical fluid and has properties that are unique to this state, but it is certainly not a liquid. You can learn more in this Emerson article about CO2 as a refrigerant and in this Hussman CO2 transcritical system training manual.

In a transcritical (trans means beyond or through, so transcritical means “beyond critical”) booster refrigeration system, the low-temp portion of the system operates using its own compressors that “boost” the refrigerant from the low temp side and discharge into the suction of the medium temp side. The high-stage compressors then pressurize the CO2 (R744) above its critical pressure/temperature.

What is traditionally called a condenser becomes a gas cooler and decreases the temperature (rejects heat from) of the discharge without actually condensing it into liquid. The cooled supercritical fluid goes through a pressure-reducing valve, where some of it condenses into liquid, and the rest remains as gas. Liquid and gas are separated in a flash tank (receiver). Pressure in this tank is usually controlled to around 450 to 500 PSIG.

It's super critical that you understand all of this.

See what I did there?

—Bryan

 

 

One response to “CO2 Booster Systems (Codenamed CO2 is Interesting and Weird)”

  1. Isn’t the reason they phased CO2 out because of a few catastrophic disintegrations of refrigeration equipment where windings had been hit with lightning voltage, that caused the windings to disintegrate and then disintegrate the metal housings? That is how I learned about CO2 being phased out.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Tech Tips

7 Horribly Challenging Ways To Transform Your Business
Business isn’t easy. Generally, when I look back at how much work it has taken to get a business off the ground, I wonder what I would have done if I had known what I know now. I wonder if I still would have been willing to put in all that work all over again. […]
Read more
Incorporating Electrical Quality Into Diagnosis
This article (and many other great training articles) was written by my friend and great educator Jamie Kitchen. This article was originally posted on LinkedIn HERE and has been republished for your benefit with his permission. Thanks, Jamie! I remember back in college I was immersed in a particularly challenging problem dealing with poly-phase circuits. […]
Read more
Boiler Basics Part 1 - Types and Components
This series of articles is written by senior boiler tech (and all-around swell guy) Justin Skinner. Thanks, Justin. There are quite a few different types of boilers out in the world. They come in all shapes, sizes, pressures, and types of fuel burned. I'm going to go over some of the more common ones, their […]
Read more
loading

To continue you need to agree to our terms.

The HVAC School site, podcast and daily tech tips
Made possible by Generous support from