Zeroth Law of Thermodynamics

Zeroth? ZEROTH? is that even a word?

Apparently so, because… SCIENCE.

The zeroth law of thermodynamics establishes the relationship between multiple objects and a common state of balance between them. It is sometimes called the law of thermal equilibrium.

Heat always tries to find a state of balance. “Hotter” is a relative term, but an object with higher molecular energy will have more heat than an object with lower molecular energy. When they are in contact, the heat from the item with higher energy will transfer to the lower-energy one until the energy content is equal. Once the energy content is equal, no more heat transfer will occur.

In short, the law states that if object A is in contact with object B and reaches equilibrium, and object B touches and reaches equilibrium with object C, then object A must be in equilibrium with object C.

This law was formulated after the other three laws of thermodynamics. However, it’s called the zeroth law instead of the fourth law because it describes the fundamental heat behavior that influences all the other laws.

 

The law’s mathematical basis

Rather than requiring a unique formula, the zeroth law of thermodynamics is a mere transitive relation. We see these in algebra and logic, and the zeroth law’s transitive relation looks like this:

If A = B and B = C, then A = C

For example, let’s say you dip two hot steel rods into a single container of cold water, but they don’t touch each other. As time goes on, each steel rod will lose some heat to the water, which approaches a balanced temperature. In time, each rod will be at equilibrium with the water. If they are both at equilibrium with the water, the rods must be at equilibrium with each other because the equilibrium conditions are the same.

 

When do we see the zeroth law of thermodynamics in HVAC/R?

In HVAC/R, we don’t necessarily see three objects at equilibrium with each other. However, we see evidence that objects with higher molecular energy transfer heat to ones with lower molecular energy.

The condenser coil of an A/C system is an example of that. The outdoors will have a higher overall molecular energy because so many more molecules are contained in a larger space than the condenser coil. However, the molecules move so quickly (higher temperature) in the condenser coil that they transfer heat from the refrigerant in the coil to the air outdoors, which has a lower average molecular velocity. That’s why HVAC systems reject heat to the outdoors.

“IMG_8910 – Technology” by ArturoYee is licensed under CC BY 2.0

Indoor coils of heat pumps work the same way. The outdoor coil allows the refrigerant to absorb outdoor heat, and the molecular energy increases quite heavily during compression. The gaseous refrigerant gets a lot hotter as a result. When that refrigerant reaches the cold home’s indoor coil, it transfers its heat to the frigid building interior. 

In all, the zeroth law of thermodynamics establishes how heat attempts to reach equilibrium between multiple objects. It sets the tone for heat and energy behavior in the other laws of thermodynamics.

 

References

https://www.grc.nasa.gov/www/k-12/airplane/thermo0.html 

https://teaching.smp.uq.edu.au/fiveminutephysics/phys1171/L18_ThermoLaws.html

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Tech Tips

Boiler Basics Part 2 - Components
This article is the second in a series on boiler basics by senior boiler tech Justin Skinner. Thanks, Justin. There are many types of boilers that do many different things, but almost all of them have some of the same basic components. It's partially because regulatory agencies require them, and other times, it's because they […]
Read more
Charging Systems with Accumulators
In air conditioning service, we don't always see systems with accumulators. In fact, they are pretty uncommon unless you work on a lot of heat pumps. However, as heat pumps gain popularity, charging systems with accumulators will be a good skill to have in your tool bag. We are Carrier dealers in Florida, so we […]
Read more
Why is 240V called "Single-Phase"?
Why is it called single-phase 240 when there are two opposing phases (or legs)? I wondered why we called two 120v opposing legs “single-phase 240” for years. Then someone pointed out to me that a typical “single-phase” pole transformer only has one power leg entering and two coming out. That freaked me out. How can […]
Read more
loading

To continue you need to agree to our terms.

The HVAC School site, podcast and daily tech tips
Made possible by Generous support from