What to Check Before Condemning the TXV

I just noticed this portion of the Carrier air handler sticker for the first time the other day. I'm like most techs; it's easy for us to ignore the great info posted right in front of us on the data tag. That's because so many of the notices contain info we are used to seeing.

I like this list because it is very practical.

  1. Verify airflow is correct. Easier said than done, but this includes a visual inspection of the air filter, evaporator coil, and blower wheel, checking all of the air handler/furnace/control settings, verifying you are getting the correct calls/signals, and then checking static pressure. Some purists suggest actually “measuring” total system airflow, but this can be very tricky unless you own a TruFlow grid or are very experienced with a hot wire anemometer.
  2. Check subcooling at the outdoor unit and verify correct charge. You need to have a solid line of liquid delivered to the TXV for it to do its job. Get the charge set first by subcooling before overanalyzing valve operation.
  3. Confirm TXV bulb is properly attached and insulated. This procedure should be done with a factory brass or copper strap or with a stainless steel strap. In all cases, it should be snug with the entire bulb making good suction line contact. If a bulb is loose or uninsulated, it will generally run lower than design superheat.
  4. Verify the system is free of contaminants and moisture. This is less something you can “verify” and more something you prevent by purging nitrogen, flowing nitrogen while brazing, and evacuating to below 500 microns with a standing decay test. It is important that you check for temperature drop across any filter/driers or screens BEFORE reaching that “bad TXV” diagnosis.
  5. Be sure the evaporator and condenser coils are clean. This is just good general advice and something we should be checking along with air filters and blower wheels anyway.


Related Tech Tips

What is Flux?
In HVAC, you will hear the word “flux” used in two totally different parts of the trade. Magnetic flux is the lines of force that emanate from a magnet, and you often hear about magnetic flux lines in discussions of motor theory. This type of flux has nothing to do with that… Flux in soldering, […]
Read more
You Can’t Eat Soup with A Fork........
Not if you are hungry, anyways— A true story. I have a good friend who owns an HVAC company. Not much of a Ph.D., but he is known to be honest, doesn’t pull vacuums through manifolds, and claims to almost always use American-made capacitors. We’ll call him Captain Kirk. He called me recently, quite worked […]
Read more
Refrigerant Basics
A refrigerant is anything we use to move heat from one place to another using the compression refrigeration circuit. However, the history of refrigerants and the different kinds is quite diverse and interesting. Have you ever noticed how your skin feels cool after you apply some rubbing alcohol to it? For a long time, scientists […]
Read more

2 responses to “What to Check Before Condemning the TXV”

  1. Bryan,

    Bullet point 3 – you state that the Superheat would, in general, be lower than design. Question- if the bulb is loose , not allowing full heat transfer to the refrigerant inside, wouldn’t it cause the TXV to starve the evaporator? And, wouldn’t this condition cause the Superheat to be too high at the evaporator outlet? My thinking is that the refrigerant will phase change from saturated to fully vapor too soon and start to Superheat before it should. Am I thinking backwards about this? Thanks.

  2. Hi, wingman64. I don’t know if anybody else has responded, and I certainly don’t have the experience that a lot of others have, but here’s my thinking. If the sensing bulb is not making good contact with the suction line, the bulb will be warmer than it would be if there was a good thermal connection, in effect making the superheat appear higher than it actually is. So, it would think (can a TXV think?) the evaporator was starved and allow more refrigerant to enter the evaporator, resulting in lower-than-design superheat. I hope that helps.

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.


To continue you need to agree to our terms.

The HVAC School site, podcast and daily tech tips
Made possible by Generous support from