Get Tech Tips
Subscribe to free tech tips.
What is a Micron?
To answer the question in the title, we use it as a measurement of pressure. REALLY, it is a measurement of distance.
First, any scale CAN be used to measure vacuum (negative pressure) and positive pressure. The trick is knowing which is best suited for which and the size of the scale. Larger units of measure are better suited for higher pressure and greater differentials; smaller units of measure are better suited for lower pressures or smaller, more critical differentials.
A micron of mercury (or micron) is a very small/fine unit of measure related to the displacement of a mercury column by atmospheric pressure, thus the distance part. In fact, a micron is one millionth of a meter of mercury displacement. That's a tiny amount of pressure.
Pressure in Inches of Mercury (“Hg)
“Inches of mercury” is a more rough measure of pressure, usually vacuum or even barometric pressure or altitude. We often represent the unit “inches of mercury” with the abbreviation inHg or “Hg. (We will use “Hg where applicable for the remainder of this article.)
1” Hg is equal to .491 PSI, which is roughly 1/2 of a PSI.
The force of the atmosphere around us is equal to 29.92 inches of mercury (Hg) or 14.7 PSIA. Therefore, a perfect vacuum can be thought of as 0 Hg, although a “perfect” vacuum can never be achieved.
When we read pressure as a tech with a gauge, we read it in PSIG, which means it is already set to zero at 14.7 PSIA and 29.92″ Hg.
So, when the suction/compound/blue gauge goes into a vacuum, it reads in the “negative” Hg scale. It goes down to -29.92 because it is PSIG, not PSIA.
One inch of mercury (Hg) is equal to 25,400 microns (of mercury).
Vacuum Scale
In the micron vacuum scale, we start at 760,000 microns at sea-level atmospheric pressure and work down towards a perfect vacuum of 0 microns or 0″ Hg. That is why a lower number in the micron vacuum scale equals a better/deeper vacuum; a higher number equals a worse/less deep vacuum.
This explanation shows why pulling a deep vacuum is done in microns; it's a very fine measurement that provides very detailed results. It's also why very small changes can make such a huge difference in the micron reading on a micron gauge.
It also shows why micron gauges can seem finicky. They are really precise instruments.
—Bryan
Comments
Maybe explain that “micron” is short for micrometer, which is a unit of distance equal to one millionth of a meter, and that “microns of mercury” refers to the height of a vertical column of mercury?
That may help explain why one inch, which is 0.0254m, 2.54cm, 25.4mm, or 25,400 μm (micrometers or microns).
For copy: add inch marks where you’re referring to inches of mercury and use “Hg” consistently. e.g. 1″ Hg, and 29.92″ Hg
Add new reply
Great Stuff! Thanks!
Add new reply
I come from a place where metric is the standard. I feel like I should have been able to puzzle that out. thanks Heath, it actually cleared up my question
Add new reply
Can you clarify this:
So, when the suction/compound/blue gauge goes into a vacuum, it reads in the “negative” Hg scale. It goes down to -29.92 because it is PSIG, not PSIA.
You say this is on the Hg scale, yet you say it’s in psig. Hg and PSI are different scales…?
Add new reply
Hi Tim,
Yes They are different scales. Hg is inches of mercury. It is a finer reading than PSI (1 PSI is about 2 in Hg). Many times, the gauge will switch from PSI to Hg once it is below 0 psig. You can see measurement scale used by the writing on the gauge. Take a look at a set of analog gauges and many will have both PSI and Hg.
Add new reply
To leave a comment, you need to log in.
Log In