Refrigeration Pump-down Cycle

This article was written by Jeremy Smith CM, an experienced refrigeration tech and all-around great dude. Thanks, Jeremy.


A very common means of control seen on refrigeration equipment is the pump down control. Why do we use this rather than just cycling the compressor off and on like a residential HVAC unit?

Since most refrigeration equipment tends to be located outdoors, it comes down to ambient temperatures and the basic properties of refrigerants we all understand (temperature and pressure) and how they can conspire to kill a compressor.

During periods of low ambient temperatures, if we merely cycled the compressor off, it could easily get colder at the compressor than inside the space. If the compressor cycles off for long enough, as it would during a defrost cycle, refrigerant vapor will start to condense within the crankcase. If we are lucky, the extent of this problem will be a unit that doesn’t start because the pressure of the refrigerant is lower than the cut-in setting of the pressure control. However, what typically happens is that enough refrigerant will condense to start to settle under the lubricating oil, causing a lack of lubrication upon restarting, leading to bearing wear and premature failure. If enough refrigerant condenses within the compressor housing, the resulting damage could cause valves, pistons, and other internal parts to break if liquid gets into the cylinders.

How can we prevent this?

One thing that is applied across almost all sectors of our industry is crankcase heaters. These small heaters, either immersion-style heaters or wrap-around style heaters, add a small amount of heat to help keep the compressor oil warm and help to prevent vapor from condensing there. The effectiveness of these is limited by the wattage of the heater, the ambient temperature, and the size of the compressor. Too low an ambient or too large a compressor, and they start to lose some effectiveness. (Read more about crankcase heaters HERE.)

So, how else can we prevent condensation within the compressor? Let’s look at the pressure/temperature relationship of refrigerants for the answer. If we lower the pressure in the crankcase to a point where the saturation temperature of the refrigerant is below the ambient temperature the compressor is in, the refrigerant cannot condense. This is why we use a “pump down” type system.

In operation, a pump down control consists of little more than a liquid line solenoid valve, a thermostat control, and a low-pressure control.   When the thermostat or defrost control opens, the solenoid de-energizes, stopping the refrigerant flow and allowing the system to pump the suction pressure down before the low-pressure control turns the compressor off.

How low should we set that cut-out? The Heatcraft installation manual has us setting the cut-out as low as 1” Hg vacuum, depending on the minimum expected ambient. I like to set the cut-in just below the lowest expected ambient temperature so that you don’t wind up in a situation like the one I mentioned earlier. If the ambient gets too low and the cut-in is too high, your unit won’t cycle on until it warms up enough, resulting in a preventable service call.

Combining a pump down control with a crankcase heater and ensuring that all controls work properly at all times can save your compressor from damage in cold weather.

 

—Jeremy Smith, CM

One response to “Refrigeration Pump-down Cycle”

  1. Jeremy great article. Just to add you want to make sure you do not go outside the operation envelop of the compressor when setting both the low and high pressure controls as this could lead to a premature failure potentially due to high compression ratios. There are a few exceptions for low temp compressors. Anyone can search Emersons online product information or google Product Selection Software to find any Copeland operation envelop or performance sheets.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Tech Tips

Properly Deburring (Reaming)
Deburring copper tubing (often called reaming) is the practice of running a blade around the inside of tubing after you cut it to remove the burr edge from the inside. It's an important practice and should be performed whenever possible. Deburring reduces turbulence inside the lines, as burrs can cause turbulence. HOWEVER… YOU MUST MAKE […]
Read more
Ductless Line Sets and Corrosion
This article includes significant contributions from Neil Comparetto and Brian Chadwick, both of whom are HVAC technicians in Virginia. Brian is also the owner of Chadwick Air, and Neil is a co-owner of Comparetto Comfort Solutions and a longtime contributor to HVAC School. Thanks, guys! DISCLAIMER: A lot of the information in this article is […]
Read more
Three-Phase Voltage Imbalance
When reading ANY article about electrical theory or application, keep in mind that it will only scratch the topic's surface. You can dedicate years of your life to understanding electrical theory and design the way many engineers do and still know just enough to be dangerous. In HVAC, we rarely need to have a DEEP […]
Read more
loading

To continue you need to agree to our terms.

The HVAC School site, podcast and daily tech tips
Made possible by Generous support from