Back

Megging a Scroll – Short #166

In this short podcast episode, Bryan talks about using a megohmmeter on a scroll compressor (or “megging” a scroll).

Scroll compressors are among the most common compressor types nowadays, and they come with their unique needs and best practices. You can't pump them down into vacuums (in many cases, you can't do that anyway due to internal protections), run them in a vacuum, or run a high-voltage megohmmeter or hipot test.

Scroll compressors differ from reciprocating compressors. A scroll compressor's motor is located at the bottom of the compressor, meaning it is immersed in refrigerant and oil when the system is operating AND when it is off; when the compressor is off and cold, there is a chance that there will be liquid refrigerant at the bottom. Compared to reciprocating compressors, scrolls tend to have a more compact and balanced design, and there could be a higher risk of internal arcing due to the tighter electrical tolerances associated with the design.

Many inexpensive megohmmeters will say that any measurement below 10-20 megohms indicates a short, but some scrolls will have acceptable readings as low as 0.5 megohms to ground; these readings will typically show up on the smaller kilohm scale. You must only use a megohmmeter to ground, not from winding to winding.

Moisture contamination, metallic debris, and lubrication issues can also cause a lower ohm reading than acceptable, so it's best to have historic data and track readings over time to make a diagnosis. Many modern multimeters can help you determine if a compressor is shorted to ground; you don't necessarily need a megohmmeter.

You may also read the following tech tip to learn more: https://hvacrschool.com/scroll-compressor-pump-down-megohm-test-fusite-plugs/

Learn more about the HVACR Training Symposium or buy a virtual ticket today at https://hvacrschool.com/symposium.

If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.

Check out our handy calculators HERE.

Comments

loading

To continue you need to agree to our terms.

The HVAC School site, podcast and tech tips
made possible by generous support from