Motor Speed – The Basics

How does a typical single phase motor know how fast to run?

Typical induction motors are dependent of the electrical cycle rate of the entering power (measured in hertz) for their speed.

Our power in the US makes one complete rotation from positive electrical peak to positive peak 60 times per second or 60hz (50hz in many other countries).

That means that the generators at the power plant would have to run at 3600 RPM if they only had two poles of power (60 cycles per second x 60 seconds per minute = 3600 rotations per minute). In reality, power plant generators can run at different speeds, depending on the number of magnetic poles within the generator. This phenomenon is replicated in motor design.

The more “poles” you have in a motor, the shorter the distance the motor needs to turn per cycle.

In a 2-pole motor, it rotates all the way around every cycle, making the no-load speed of a 2-pole motor in the US 3600 RPM.

A 4-pole motor only goes half the way around per cycle; this makes the no-load (Synchronous) RPM 1800.

6-pole is 1200 no-load (no slip).

8-pole is 900 no-load (no slip).

So, when you see a motor rated at 1075 RPM, it is a 6-pole motor with some allowance for load and slip.

An 825 RPM motor is an 8-pole motor with some allowance for slip.

A multi-tap/multi-speed single phase motor may have three or more “speed taps” on the motor. These taps just add additional winding resistance between run and common to increase the motor slip and slow the motor.

That means that a 1075 6-pole motor will run at a 1075 RPM underrated load at high speed. Medium speed will have greater winding resistance than the high speed and, therefore, greater slip. Low speed will have a greater winding resistance than medium and have an even greater slip.

Variable-speed ECM (electronically commutated motor) are motors that are powered by a variable frequency. In essence, the motor control takes the incoming electrical frequency and converts it to a new frequency (cycle rate) that no longer needs to be 60hz. This control over the actual frequency makes ECM motors so much more variable in the ten speeds they can run.

So, in summary, there are three ways you can change a motor speed:

  • Change the number of poles (more = slower)
  • Increase slip to make it slower, decrease slip to bring it closer to synchronous speed
  • Alter the frequency (cycle rate)


5 responses to “Motor Speed – The Basics”

  1. Bryan, almost at the end of your tip on motor speeds from November 27th, 2016 there is a typo, the word “ten” should probably be “the”.

  2. Bryan,

    Thanks for this post. I have been watching a few of your videos and I listen to the podcast. I have always taken amp draw readings for direct drive indoor blower motors during a normal maintenance. I have been doing some research and now am wondering if this test is invalid. The amp draw along tells me nothing. My question is during normal maintenance test how can I test this style of motor to see if it is still in good working order? TIA. JOHN

  3. Can you do a short on horsepower and “speed”, when we use rescue motors.

  4. I’m trying to find out what the individual rpms are for each speed tap. Example, 1/2hp 4 speed 1130rpm Genteq 3913 motor. Does 1130rpm stand for maximum rpms using the black wire, what are the rpms for the blue, orange and red?? Have looked everywhere and can’t find any info.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Tech Tips

The Secrets to Happy HVAC Customers
It was an awkward conversation, bringing a technician nearly twice my age into my office for a talk. “I'm good at fixing units. I'm not some fancy-talking sales tech,” the technician half-mumbled as I sat looking at him. “The customer complained that you made them feel uncomfortable, you were unfriendly, and you tracked dirt in […]
Read more
What is Inductive Reactance?
Ohm’s law is pretty straightforward; you multiply ohms by amps to get the voltage. Using variable E to represent voltage, variable I for amps, and variable R for ohms, the equation for Ohm’s law looks like this:  E = I × R  You can figure out the number of amps in a system using basic […]
Read more
What are Dry and Wet Contacts?
I was talking about dry contacts with one of my techs, and he looked at me like I had three heads—and one of them was on fire. So, I figured it would be good to cover the difference between wet and dry contacts in a tech tip. Basically, “dry” contacts are switches with no shared […]
Read more

To continue you need to agree to our terms.

The HVAC School site, podcast and daily tech tips
Made possible by Generous support from