Fan (Blower) Efficacy

For those of you who use the MeasureQuick app for system diagnosis and performance testing, you may have noticed the “fan efficacy” results and wondered what it is.

It is simply the CFM output of the system divided by the wattage used by the blower. It is only for the blower motor and has nothing to do with the other components when done properly.

Fan (blower) efficacy is called out in various codes and standards, such as the California Energy Commissions' requirement that all blowers perform at or below a 0.58 fan efficacy. That means a blower that is moving 1000 CFM cannot use more than 580 watts of power to do so.

CFM

The tricky part of measuring fan efficacy is getting accurate measurements of system CFM and blower amperage. We can use equipment manufacturer fan charts and an accurate TESP (total external static pressure) measurement to figure out the CFM when the system is new and clean. When using these charts, it's important that the system is set up and runs according to what is shown on the chart; one wrong pin setting or input can lead to vastly different airflow than the chart shows, resulting in a fan efficacy value that is way off.

Other options like measuring airflow at the return with a hood, anemometer duct traverse, or the Trueflow from TEC can be used for measuring system CFM, but all have their own challenges.

Blower Wattage

When measuring blower amperage, the panels must be in place, which can be difficult to accomplish on some system types, making a wireless connected ammeter very handy where the meter can be put in place and the panels put back on for testing.

Traditionally, techs calculate wattage by measuring voltage and amperage and multiplying them together. That is actually VA—not wattage— because it does not account for the power factor. The only way to measure wattage accurately is to use a watt or power quality meter, like the Redfish IDVM550, which calculates wattage by multiplying the VA by the power factor for the final wattage.

ECM Motors

ECM (electronically commutated motor) motors are more efficient than traditional PSC motors, but their efficacy will generally vary based on the static pressure they are subjected to. Because most ECM motors are either constant airflow or constant torque rather than constant speed, they will increase in wattage as the static pressure increases. That means that the fan efficacy will decrease on these motors as filters and coils become dirtier.

—Bryan

Related Tech Tips

False Negatives on One Capacitor Test
I have spent the last few days checking run capacitors on various systems with several different meters, and this is what I found: #1 – Comparing Start wire amps against Run + Common under the clamp together is meaningless as a practical test. I used this test on 3 different systems with 3 different meters […]
Read more
Vacuum Pump Oil
This article is written by Sal Hamidi, founder of Productsbypros.com, an innovative manufacturers representative agency that promotes great HVAC/R products through training and media. You can reach Sal at Sal@productsbypros.com.   If we are going to discuss vacuum pump oil, it's important to understand what it is first. Most HVAC application vacuum pumps are rotary […]
Read more
Mean Radiant Temperature: What It Is and Why We Should Care
Our industry puts a lot of emphasis on the “AC” (air conditioning) part of HVAC. We specialize in maintaining and servicing a wide variety of simple to complex air distribution systems. But we’re really in the business of comfort—human comfort and health, to be precise. So, just how much does the human body rely on […]
Read more

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

loading

To continue you need to agree to our terms.

The HVAC School site, podcast and daily tech tips
Made possible by Generous support from