Don’t Squeeze Radiant Barrier

You are probably all familiar with radiant barriers. Sometimes it is thin foil draped under the roof deck, sometimes it's used on the inside of stud walls or over furring strips before drywall goes up and there is even plywood with a radiant barrier attached to one side that is used for roof decking.

The point of this article is to remind you that you eliminate the benefit of a radiant barrier when you sandwich it between materials in other words when there is no “air gap”, but I also want to help you understand why this is.

How Radiant Heat Transfers 

Heat energy is the “force” that makes the atoms move and molecules jiggle and it's in everything over absolute zero (-460°F). Heat is transferred or moved in one of three  ways but heat itself isn't these things, these are methods by which heat is moved like walking, flying in a plane or riding a surfboard.

  • Conduction – Heat moving when one molecule bumps into another and imparts some it's force. It's like standing in a line and shoving someone, they move because you impart force directly on them.
  • Convection – Heat moving when the molecules in a fluid are free to move around. It's like flying on a plane, you are moving freely through the air and bringing your energy with you.
  • Radiation – Heat moving through the air or a vacuum via electromagnetic waves. It's like surfing because your energy is riding a wave DUDE!…. and that stupid metaphor was the whole reason for the other two lame ones…

So from a practical standpoint in a building we control conductive heat transfer with insulation, convective heat transfer by air sealing to the unconditioned spaces and radiation with low emissivity barrier with the shiny side facing an air gap, this is if you need a radiant barrier at all.

Radiant heat can only transfer when you have two surfaces pointed at one another that have a different temperatures. The rate at which heat will transfer between them is a function of the temperature difference, the distance between them and the emissivity of each surface. A suface with an emissivity of 1 is a so called “perfect black body” and is a theoretical perfect emitter and absorber of radiant heat.

A surface with an emissivity of of 0 is perfect reflector of radiant heat energy and neither absorbs or emits radiant heat. In practice we do not see 1 or zero but a fraction of 1 with a black dull surface being close to one and a shiny, reflective radiant barrier generally being around 0.10 meaning only 10% of the radiant energy is absorbed or emitted.

So why can't we sandwich a radiant barrier? 

Imagine getting a pan on a stove nice and hot and then hovering your hand over it, you would feel the radiant heat emitting from the pan. Now place a sheet of aluminum foil over the pan and hover your hand again, very little radiant will be absorbed and emitted by the foil and your hand will be much cooler.


Push your hand down on the foil and squeeze it into the pan…


Spoiler alert, it will burn you.

While aluminum foil has a low emissivity it is very thermally conductive and heat travels through it easily via conduction (molecule to molecule). This means that the only way it helps you block heat is when one shiny, low emissivity side faces an air gap (or vacuum or other fluid that allows the electromagnetic waves to pass easily through). This is why you see white radiant roofs on shopping centers that face the sky, or plywood for roof decking with a radiant layer that faces down into the attic.

If you press anything solid up against both sides of a radiant barrier you make it a conductive layer and it does NO GOOD.

Some of you may (incorrectly) assume that a radiant barrier must be pointed at a light source (like the sun) to do any good. Remember, you don't need visible light to have radiant heat transfer just a temperature difference. So a radiant layer on the underside of roof decking will help block radiant heat from leaving that roof decking and entering the ceiling and trusses and whatever else is in that attic even if it is pitch black up there because the radiant barrier is bad at absorbing AND emitting radiant heat so even though the radiant barrier on the underside of the roof deck would be hot to “touch” (conductive) it does much less emitting then wood so more of the heat stays put.

— Bryan


Related Tech Tips

Nomenclature and How to Use It
Nomenclature on HVAC/R equipment is a sequence of numbers and letters a manufacturer uses to speak directly to the technician. Lots of initial upfront information is handed to the technician by the manufacturer the moment the technician reads the nomenclature in the model and serial numbers. So how do we make sense of these seemingly […]
Read more
5 Money Mistakes to Avoid in Service Business
  Even though there will almost surely be a healthy demand for HVAC service businesses, any service business is still at risk of going under. Most of the trouble comes down to money mismanagement or misunderstanding. The good news is that the risks are avoidable with proper education and care. We aren’t accountants or lawyers, […]
Read more
Locating a Low Voltage Short in Residential A/C Systems
     Newer technicians often get hung up and frustrated when searching for low voltage shorts. This is understandable due to the broad spectrum of possibilities for the location of the short. However, this doesn’t mean the process needs to be complex. The time it takes to find a low voltage short may vary greatly depending on […]
Read more

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.


To continue you need to agree to our terms.

The HVAC School site, podcast and daily tech tips
Made possible by Generous support from