Does the Voltage or the Amperage Kill You?

I hear the following phrase a lot:

It's the amperage that kills you, not the voltage.

While there is truth to the statement, it is sort of like saying, “It's the size of the vehicle, not the speed that kills you when it hits you.”

OK, so that's a pretty bad example, but hopefully, it gets the point across. BOTH of them are needed to cause injury or death, and in the case of voltage and amperage, the higher the voltage, the higher the amperage.

This statement about amperage being the real danger has led to many people inaccurately believing it is the size of a panel or the gauge of wire that makes something more or less dangerous—which is 100% incorrect.

Let's take a quick look at OHM's law:

Amps = Volts ÷ Ohms 

The resistance (ohms) of the human body depends on many factors, including things like the moisture content of the skin, what other objects the current path is traveling through, which path the current is taking through the body, etc.

While the resistances vary based on these factors, Ohm's law still holds true. When you increase the voltage, you ALSO increase the amperage.

Take a look at this chart from the CDC:

*Effects are for voltages less than about 600 volts. Higher voltages also cause severe burns.
†Differences in muscle and fat content affect the severity of shock.

Let's say that a particular shock is traveling through a 20-kiloohm (20,000-ohm) path in your body.

At 120V, this would produce a 6mA shock.

At 240V, it would be 12mA.

At 480V, it would be 24mA.

It becomes clear pretty quickly that higher voltage does lead to more dangerous shocks, as does the path's resistance.

High Resistance and Low Voltage = Safer

Low Resistance and High Voltage = Danger

This is why working around live electrical should only be done with insulated tools, proper PPE, and in dry conditions. These all serve to keep the resistance up to reduce the likelihood of a fatal shock. The higher the voltage, the more diligent you need to be.

Some people may bring up high voltage shocks from a taser or static electricity as proof that “voltage doesn't kill.”

In these cases, the power supply is either limited, intermittent, or instantaneous. This means that while the voltage is high, it is only high for a very short period. Unfortunately, those sorts of quick high voltage discharges aren't the big danger we face in our profession. Most of the electrical work we do is on systems that will happily fry us to a crisp before the power supply cuts out.

A circuit breaker or fuse will never protect us because we draw in the milliamp range when we are shocked, and almost all fuses or breakers don't trip or blow until much higher levels are reached.

Be safe around high voltage and keep your resistance high.

—Bryan

P.S. – Here is a guide to electricity and its effects on the heart with some safety tips. Remember, we are NOT an official OSHA safety resource, but we hope you'll find some useful or interesting information in the article.

Related Tech Tips

False Negatives on One Capacitor Test
I have spent the last few days checking run capacitors on various systems with several different meters, and this is what I found: #1 – Comparing Start wire amps against Run + Common under the clamp together is meaningless as a practical test. I used this test on 3 different systems with 3 different meters […]
Read more
Know the Limits of Subcooling
This article was written by RSES CM and excellent market refrigeration tech Jeremy Smith. Thanks, Jeremy! I frequently see techs online struggling with charging or troubleshooting refrigeration equipment and using subcooling as a diagnostic or charging method. Please don't do this unless you understand it fully. Many times, trying to charge a refrigeration system to […]
Read more
Does Setpoint Lead to Freezing?
Does setting a thermostat too low cause an air conditioning system set in cool mode to freeze? The answer is no, at least not directly. However, low evaporator load (low return temperature or low airflow) and low outdoor ambient temperature can lead to evaporator coil freezing. Low indoor setpoint can lead to low return air […]
Read more

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

loading

To continue you need to agree to our terms.

The HVAC School site, podcast and daily tech tips
Made possible by Generous support from