Does Air or Nitrogen Absorb Water?

There are many examples of teaching using metaphor to help someone get a grasp of how something works without being EXACTLY correct.

Some examples are how we often use water flow to explain electrical flow or refrigerant circuit dynamics. It's enough like the way it works to get our heads wrapped around it but there are many differences and the metaphors eventually break down.

This is definitely the case with air and nitrogen “absorbing” water

I've done podcasts and videos about how air can “hold” less moisture when it is cooler and more when it is hotter. You have likely heard old school techs talk about triple evacuation and sweeping with nitrogen to “absorb” the moisture from the system.

News Flash, Air and Nitrogen DO NOT absorb or hold moisture… They ignore one another at parties and they certainly don't shake hands.

Water vapor in the air behaves much like all the other gasses contained in the air with the notable exception that water exists in both vapor and liquid states at atmospheric pressure and temperature.

When the temperature of water vapor is higher, a higher percentage of the air by volume can CONTAIN water vapor, but the air itself isn't what is holding it. It does interact with it as the molecules move and bounce around and the percentage of water vapor in the air does impact the mass/weight of the air by volume (water vapor weighs less than dry air) so there are certainly impacts to the makeup of the air based on moisture content.

The percentage of the air around us that is moisture can vary from almost zero In cold arctic & Antarctic climates to nearly 4% in hot, tropical climates.

When teaching it we speak as though the air is a sponge and the hotter the air the bigger the sponge. This certainly helps us remember but it isn't really how it works. In reality water in the air is all about the saturation temperature and pressure of the water and the air has little to do with it.

By Greg Benson

This is the same sort of thinking when a tech is having a hard time pulling a vacuum and they add dry nitrogen to the system to “absorb” the moisture. First off, you will want to sweep the nitrogen through the system, not just pressurize. Secondly, the nitrogen has no special properties that allow it to “grab” moisture. It can entrain the water vapor using Bernoulli's principle, it will warm up the system a bit, it will certainly add in a bit of turbulence which can help move the oil around and potentially release some trapped moisture… but nothing more than that.

Don't get me wrong, there is nothing wrong with sweeping with dry nitrogen, even better to use a heat gun and warm the compressor crankcase, receivers and accumulator and coils during a deep vacuum on a large system to help speed up the vaporization of moisture.

It doesn't change the fact that air and nitrogen don't “hold” moisture.

— Bryan

 

Related Tech Tips

Be Careful When Jumping Out a Blower
We've seen it before. A tech diagnoses a failed blower relay or board so they leave the blower jumped out by putting a terminal multiplier on the common terminal of the relay/board and connecting the fan speed tap right to power. There can be an issue with that. Some electric heat fan coils have a […]
Read more
Ain't No Fooling With Free Cooling (Tales of the Economizer)
This article was written by Gary McCreadie from “HVAC know it all”. You can learn more about Gary and his tips and growing community on Facebook and on LinkedIn What is an economizer?  Simply put, it is a mechanical device that is designed to reduce the consumption of energy, whether it be fuel, electricity, or other. According […]
Read more
A Steam Heating Primer
With cold temperatures right around the corner it is a good time to to brush up on our steam now and no better way to do that than by reading an article by Dan Holohan. This article was written by Dan Holohan and published at HeatingHelp.com HERE and is reposted here with permission. This is […]
Read more

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

loading

To continue you need to agree to our terms.

en English
X