Defrost Time & Temperature

The most common method to defrost appropriately in refrigeration involves both time for initiation and a combination of time and temperature for defrost termination (ending defrost).

But why can't we just use temperature or time alone? (You may wonder.)

Imagine a common freezer with a designed box temperature of -10°F and a coil temperature of -20°F. Periodically, the evaporator coil will need to defrost, and the amount depends on how much moisture is brought into the box from opening doors and adding new product.

How could we possibly tell when the coil needs to defrost by temperature alone? The coil is already 52°F BELOW the freezing temperature at design conditions. Whether the coil has a lot of ice on it or very little, it will still be cold enough for ice to form, so using the coil's temperature alone is a poor indicator of when a defrost is needed (initiation of defrost).

So what if we used time alone? It is common to set up freezers for two (dry) to six (humid) defrosts per 24-hr period, depending on the climate and how they are being used. You would then set up a length of time for the defrost as a best guess. If it goes for too long, you risk wasting energy and warming the product. If the defrost is too short, you risk an incomplete defrost that will gradually freeze the coil.

With this time-only strategy, you are left guessing, and to prevent progressive freeze-ups, you will always need to defrost a little too long.

So instead, we use a combination of time to set the number of defrost occurrences per 24-hr period. We use time to make a solid guess at how long it will take to defrost the evaporator coil reliably, and then we use temperature to terminate (stop) the defrost once the coil warms up enough that we are sure it is no longer icebound.

This combination of time and temperature for defrost termination also gives us a bit of a backup plan. If the temperature sensor or thermostat isn't working correctly, it will still go back to refrigerating once the time is complete. If the time is set way too long for defrost, the temperature termination will stop the defrost and send it into refrigeration mode before the product gets too warm.

This is why it is common to initiate defrost using time and terminate defrost using temperature and time.

You can think of it like an irrigation timer that uses a time schedule to water the lawn but can ALSO use a rain sensor to prevent it from watering when it just rained.

This same strategy of time and temperature is also used in many comfort heat pumps to defrost the outdoor coil in heat mode.

—Bryan

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Tech Tips

Refrigeration Pump-down Cycle
This article was written by Jeremy Smith CM, an experienced refrigeration tech and all-around great dude. Thanks, Jeremy. A very common means of control seen on refrigeration equipment is the pump down control. Why do we use this rather than just cycling the compressor off and on like a residential HVAC unit? Since most refrigeration equipment […]
Read more
How much PRESSURE is that Recovery Tank Designed For?
Most techs know that you shouldn't fill a recovery tank more than 80% with liquid-based refrigerant. Many know that the WC rating stands for “water capacity.” So, you need to adjust for the density of the actual refrigerant rather than just using 80% of WC. I hope most of you know that the TW marking […]
Read more
Lifting Techniques Part 4 - Using Unistrut
This is Part 4 series by Senior Refrigeration Tech (and prolific writer) Jeremy Smith. Pay attention to this one, folks. I know rigging and safe lifting practices may be boring to some of you, but it could very well save your back or your life. Disclaimer This article is written by a technician representing his […]
Read more
loading

To continue you need to agree to our terms.

The HVAC School site, podcast and daily tech tips
Made possible by Generous support from