Dalton’s Law of Partial Pressures

Most of the laws we refer to in air conditioning and refrigeration are pretty obvious and practical. Dalton's law of partial pressures is no exception. John Dalton observed that the air pressure was equal to the added pressures of each gas that make up air. That means that the pressure and density of air can vary based on the exact makeup of the gases contained in the air.

The law of partial pressures states that:

 In a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases.

That simply means that if you take two gases and place them together in a contained space, you simply add the pressures to get the total pressure. The only case when this does not apply is when the gases “react” with one another to create new molecular structures.

In practical terms, this is why nitrogen or air in a refrigerant circuit increases the pressures. The pressure of the nitrogen is added to the pressure of the refrigerant, resulting in higher pressure.

It is also one reason that refrigerant manufacturers blend refrigerants to create ideal boiling and condensing temperatures based on the percentage of one refrigerant over another. A common example of this is R407C vs. R407A. Both are made up of R-32, R134a, and R-125, but the percentage of each in the mixture dictates the pressure/temperature properties.

Now clearly, this law applies only to gas (vapor), not matter (refrigerant) in the saturated state like refrigerant in a tank. However, when the refrigerant is in the vapor state, it obeys Dalton's law.

—Bryan

P.S. – If you'd like to learn about John Dalton's life story and read about more practical applications for his law in the HVAC industry, please check out this other article we wrote about him.

Related Tech Tips

Prevent Refrigerant Migration
Refrigerant migration is a natural process that occurs during the off-cycle. The refrigerants have an affinity for oil and seek out the lowest-pressure areas, so it only makes sense that some refrigerant would be drawn to the compressor crankcase and may condense there. When the refrigerants condense, they saturate the oil. As a result, refrigerant […]
Read more
Is Liquid Incompressible?
Compressibility is the ability of a substance to be squeezed into a smaller volume. It is the change in volume and increase in density that results from an increase in pressure. The subject of compression should be familiar to HVAC techs. After the return air passes over the boiling refrigerant in the evaporator coils, the […]
Read more
Low Airflow - Beyond the Obvious
One of our techs called me the other day and gave me a story of woe. He had been working on a system, and he had the following readings: Low superheat Low suction pressure Low head pressure He reassured me that the system airflow was correct and wondered what could have been wrong. I asked […]
Read more

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

loading

To continue you need to agree to our terms.

The HVAC School site, podcast and daily tech tips
Made possible by Generous support from