4-20ma Control Basics

Back in the “good old days,” controls were all analog and mechanical, which simply means that they acted in a directly connected and variable manner based on a change in force. Both pneumatic (air pressure) or hydraulic (fluid pressure) systems are examples of mechanical or analog controls. When the pressure increased or decreased on a particular device, it signals a change in action on another device like a pump/valve, etc.

In the HVAC/R industry, we still see these types of controls, with a TXV being a common example. The TXV is controlled by pressures in the suction line, bulb, and spring to set the outlet superheat. These forces are all mechanical without electrical inputs or specific “data points.” The feedback from these forces is in constant tension to output the proper amount of refrigerant to properly feed the evaporator coil.

Digital vs. Analog

As controls have changed from mechanical to electrical, we now have systems controlled by analog electrical signals and digital electrical systems. Analog is simply a varying electrical signal (either voltage or amperage) that signifies changes in a system or device. A digital signal means data encoded into “digits,” which can be communicated using many different computer languages, rules, or protocols (these all mean essentially the same thing). In digital controls, the “signal” can include a combination of voltage, amperage, and on/off changes to communicate between devices.

So what about 4-20ma?

When the industry started to change from mechanical to electrical, they created a protocol (set of rules) that controls could use that would still function similarly to the old pneumatic controls. They decided that the range would be 4ma (milliamps) as the bottom reference of any sensor, and 20ma would be the top reference. If you were setting up a sensor to indicate the fluid level in a tank, you would set the bottom output to 4ma (meaning empty) and the top output to 20ma (meaning full).

In the case of a pressure transducer, you set the top range to the max rating of the sensor to 20ma and the bottom pressure reading to 4ma—you get the point.

Milliamp controls are great because of their simplicity and ruggedness. You supply power to a “sensor” (actually a sensor/transmitter, to be exact), and based on the measurement, the sensor reports to the transmitter that produces a milliamp signal. This signal is connected to an input on the control that measures the amperage and converts that to a reading.

Because the amperage is the same at all points in the circuit, the 4-20ma circuit is not impacted by a voltage drop or interference like a voltage sensing circuit. Because the “bottom” of the scale is 4ma, the control can also sense the difference between an “out of range” condition below 4ma and an open circuit.

The downside of a 4-20ma control is that each device requires its own conductor. In digital controls, many devices can be controlled by a single conductor set or “trunk,” making it much easier to route, configure and manage complex controls.

Testing 4-20ma Circuits 

There are two different ways to measure milliamps. One is to use a special milliamp clamp called a “process clamp meter” that allows reading the amperage without disconnecting wires. These meters are expensive, and it is unlikely that a typical HVAC/R tech will have one.

The more common way is to use alligator clips on a quality meter set to the milliamp scale and connect in series with the circuit. That means you will need to disconnect a wire or terminal and put your meter in the path. This is the same way we test microamps on a gas furnace flame sensing rod, only using the milliamp scale.

—Bryan

 

Related Tech Tips

The Learning Mindset - It Isn't Obvious Until It Is
Note: This short series is on the mindset of learning (and teaching), not really a “tech tip,” per se. We will be back to the tech tips in a few days.  I've heard and repeated these phrases countless times over the years, both at home and work: That should be obvious. It's just common sense. […]
Read more
Condensate Drain Codes & Best Practices
It should be stated and restated that codes and code enforcement vary from location to location within the US. The IMC (International Mechanical Code) is one of the most widely utilized and referenced. The 2015 version of the IMC section 307 is what I will be referring to in this article. Condensate Disposal  The code […]
Read more
Why is 240V called "Single-Phase"?
This is a quick article from the archives that got a big response 4 months ago. I also just did a Facebook Live video this morning baring my soul on the topic of flowing nitrogen in response to an email. Enjoy. Why is it called single-phase 240 when there are two opposing phases? I wondered why […]
Read more

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

loading

To continue you need to agree to our terms.

The HVAC School site, podcast and daily tech tips
Made possible by Generous support from