Month: November 2017

This article serves two purposes. First, it is an article for technicians who have heard of the dreaded “ghost” voltage but never understood why it happens. Second, for my own apprentices and techs who I stumped this morning with a diagnosis problem that involved “ghost” voltage that they were unable to diagnose.

If they read my tech tips they will get the answer… sneaky right?

 So what is meant by ghost voltage?

In some cases, you will be diagnosing an electrical issue, usually controls / low voltage issue. You will be measuring potential on a circuit and then when the circuit is connected to the load the voltage will disappear … like a “ghost”.

For example, you make be measuring 24v at a condensing unit on the “Y” contactor circuit when the conductor (wire) is disconnected, but as soon as you connect it to the contactor/control board the voltage “disappears” when measured across the load (across the contactor coil) or more simply from Y to C.

In other cases the voltage may not disappear completely, it may just drop way down, or in other cases the contactor may chatter, circuit board lights dim etc…

I have heard all of these situations called “ghost” Voltage, but they are actually just voltage drop and these symptoms are caused by additional resistance in the circuit OTHER than the designed load.

Quick Note: there are also “induced” voltages that can appear as ghost voltage due to conductors running in parallel with other current carrying conductors. This is more common in Commercial and industrial applications where many wires are bundled or in close proximity over long distances. These charges are usually small and often “disappear” under load.

Rarely do we want more than one electrical load (resistance point) in a single circuit. When this does occur it is usually undesigned and caused by of long wire lengths, improperly sized wire and poor connections.

Now to CLARIFY, when referring to a circuit we mean one complete path between electrically different points (say L1 and L2 in single phase 240 or 24v hot to 24v common on a control transformer). Some think of parallel circuits as a single circuit, but while they may share conductors they have an individual load path.

To cut to the chase, whenever wire is undersized, runs of wire are too long or the circuit contains poor connections there will be additional resistance introduced to the circuit. When there is more resistance added in places other than the load (in this case a contactor coil) there will be a voltage drop and therefore the voltage applied to the load will be decreased. When a wire isn’t connected to the load this drop will be invisible because the load isn’t in the circuit and therefore you are simply reading across the OTHER, unintended load (resistance) which will often be the full voltage depending upon the exact issue and when you are making the measurement.

In every complete and independent circuit, including a series circuit, the amperage is the same no matter where in the circuit you measure it. Before the load, between loads, after the loads… it doesn’t matter. The amperage is dictated by the total applied voltage and the resistance (or more accurately the impedance) of the entire circuit.

The voltage applied to each load is dependant on the resistance of the load in comparison to the total resistance of the circuit. In the example below, you can see that the amperage is the same on each load and is dictated to be 500 microamps because the total circuit ohms is 18,000.

The voltage drop of each load in series is equal to it’s percentage of the total circuit resistance. Since  loadR1 is 16.5% of the total resistance in the circuit, the voltage drop across R1 is 1.5V because 1.5 is 16.5% (0.165) of 9V.

There are a few other factors that make the trouble with voltage drop worse. Let’s say you use an undersized wire to feed a lightbulb, an undersized wire means that the conductor has a lower ampacity (amp capacity) than it should have. Once the circuit is energized the wire will begin to heat up, as it heats up the molecules in the wire begin moving faster which increases the resistance of the wire. The greater the resistance of the wire the greater the voltage drop across the wire resulting in a hot, dangerous wire, increased voltage drop at the bulb, less light from the bulb and decreased circuit amperage (less total work being accomplished).

In the case of many loads including inductive (magnetic) loads like a compressor contactor, the resistance in the coil isn’t just resistance you can measure with the contactor de-energized. This resistance that is created within an electromagnet once it is energized is called “inductive reactance” and it is measured in ohms of impedance. In order for the contactor coil to properly engage it requires the correct applied voltage and without the properly applied voltage, the resistance of the coil remains low. The crudely drawn diagram below (I’m no artist) shows a contactor coil circuit with no issues and a 0.5 amp  current at 48 ohms

When you add in a 200 ohm “bad connection” or any other type of resistance, not only does it create huge voltage drop, it also drops the impedance of the contactor coil itself with the result being a very low applied voltage (3.13V) on the contactor coil with it connected and under load. Under these conditions, the contactor won’t try to pull in at all. Under less extreme conditions it may chatter or become noisy.

Now, this is a hypothetical situation, but you will notice that the poor connection is AFTER the contactor coil in what we call the common circuit in 24v controls. It doesn’t matter WHERE in the circuit resistance is added, whether before the switch (in this case a thermostat) in the line side or after the switch on the load side. It could even be in common or in the switch itself.

Anytime additional resistance is added to a circuit it results in voltage drop when the circuit is intact. When we disconnect wires to test voltage or test voltage with a circuit that has an open switch we can create confusion and observe “ghost” voltage. In reality it is simply extreme voltage drop caused by additional resistance in series with the load.

— Bryan

carrier_defrost_thermostat

When you work on a heat pump system and you want to test defrost there are so many different test procedures to follow to test the board and sensors. Most involve “forcing” a defrost by shorting out pins on the board or advancing the time on the defrost initiation and installing a factory provided pin jumper.

Lots of pins and jumping involved.

But one thing to need to be able to distinguish is whether the system uses sensors or thermostats to initiate and terminate defrost.

A thermostat is an open and closed switch, they are usually round in shape like the one shown above and they open within a set temp range and they close within a set temp range. The one shown above is a Carrier Defrost Thermostat and it closes at 30 degrees +/- 3 degrees and it opens at 65 degrees +/- 5 degrees. In this case because this particular sensor closes in colder than 32 degree temps you can’t even use an ice bath to test it. If it is below 32 outside it is easy to test (duh) otherwise you can just run it in heat mode with the cond fan off and see when it closes by using an Ohmmeter.

On a defrost thermostat you can also easily jump it out to test the board since it is just open an closed.

A defrost sensor is a thermistor. A thermistor changes resistance based on the temperature it is exposed to. In order to test you can measure the ambient temperature, make the the sensor is removed and acclimated, measure the Ohms  of resistance and compare to the manufacturer chart.

Thermistor

You CANNOT jump out a thermistor.

— Bryan

P.S. – A podcast about Heat pumps is available HERE


We’ve seen it before.

A tech diagnoses a failed blower relay or board so they leave the blower jumped out by putting a terminal multiplier on the common terminal of the relay / board and connecting the fan speed tap right to power.

There can be an issue with that.

Some electric heat fan coils have a heat / blower interlock where the heat relay / sequencer back feeds and brings on the blower across normally closed (NC) contacts. The purpose of this is to ensure the blower comes on with a heat call without the need for a G call.

In some circumstances when you put in a terminal multiplier and constant power the blower, the G call sends that constant power back to the Heat strips and brings them on.

Not good… high power bills, melted wires, fire, death and stale doughnuts.

So, if you are leaving a blower jumpered out to run constantly I advise doing it separate from the board completely.

Coincidentally the photo at the top is a setup that will not back feed because it uses two isolated circuits on the Heat sequencer for fan and heat…. so the photo I chose wasn’t the best. Cut me some slack, the blower assembly was sitting right behind my office.

— Bryan

There are several types of Ice Machines but in this article we will focus on Cuber style and Flaker or Nugget style. Both types produce Ice but the process of freezing and harvesting is a little different. The application in which the Ice will be used will determine what style of machine is needed. I primarily work with Restaurants and Hospitals so my article will be geared in that direction.

Let’s start by simplifying the ice making process, if we take water and circulate it over an evaporator that is below freezing we will at some point start to freeze that water, once our Ice has formed we than harvest the ice and start our process again. That’s about as simple as it gets

The  steps to make Ice seem simple take water and freeze it, but It’s not that simple. Making Ice cubes is actually a pretty complicated process, with several critical steps that must be met for the process to work correctly. The first step starts with properly cleaning the water that will be made into ice to remove any impurities, water itself naturally contains minerals and those minerals are an Ice Machines worst enemy. The minerals lead to calcium buildup which causes issues with the ice machine. A quality ice machine install will have a high quality water filter system installed that was sized properly and has the appropriate filters inside that are chosen after a water quality test has been performed. Once we have properly filtered water we bring the water into a reservoir inside the machine and the water waits until the machine is ready to make Ice.

Among all the ice machine manufacturers there are several methods that the machine will tell itself that the ice storage bin is low on Ice and to turn on, the most common methods are a thermostat and or some sort of mechanical control that is actuated by ice buildup, subsequently telling the machine that the ice is low and it’s time to turn on.

Cuber style ice machines

Assuming the machine is ready to turn on, most brands of ice machines will start in a pre-chill, which means we cool the evaporator with no water running over it, this is done to try and prevent slush from forming. Than by means of a water pump the machine will start to circulate the water over the evaporator, and that water will continually run over the evaporator and down into the sump than it will be pumped over the evaporator again, each time it passes over the evaporator the water will get colder and colder and eventually a little bit of the water will start to freeze to the evaporator plate, this process will continue over and over again until the ice is the proper thickness. The thickness can be determined by many methods including a thickness sensor, water level monitoring, and or a timer. Once it’s time to harvest the ice the most popular method is to introduce hot refrigerant from the discharge of the compressor into the evaporator and subsequently melt the ice off the evaporator from the inside out while running a little bit of water over the cubes to assist dropping the cubes off the evaporator. The harvest cycle is usually terminated by a timer that is in the circuit board. Each manufacturer has their own unique way of making and harvesting the ice. With all cuber style ice machines the harvest cycle is very dependent on maintaining an adequate high side pressure as their defrost depends entirely on it. When the machine is self contained and located indoors its not too hard to maintain the proper head pressure because the building will likely be conditioned, however on remote systems where the condenser is located outside we utilize head pressure control valves (headmasters) to back up the refrigerant in the condenser to reduce the condensing capacity of the condenser and subsequently raise the head pressure.

Flaker or Nugget style Ice machines

These machines have a unique way of making ice they utilize a round cylinder evaporator that has an auger inside of it that is turned by a high torque gear motor. The auger sits directly In the center of the evaporator with less than 1/16th of an inch clearance on either sides and the auger is always spinning it has the shape of a corkscrew. The machine will have a water reservoir that supplies water to the evaporator whenever it gets low. The machine will start to freeze the water and as it becomes ice the continually turning auger will force the ice up to the top of the evaporator and out of a nozzle that will shape the ice into the desired style (Crushed, Flaked, and or Nugget). It is important to notice that with this style of ice machine the harvest cycle happens when the ice gets thick enough for the auger to scrape it off and it both freezes and harvests the ice at the same time.

— Chris Stephens

P.S. – we have a new podcast out on ice machines HERE enjoy

My Grandfather is a really interesting guy. He grew up working in the Pennsylvania coal mines starting at the age of 7 or 8 and then worked as well driller, and a plumber, also went to HVAC school, and did some gas work worked a while as an electrician, welder, diver and ended up as an aircraft salvage man.

One of his favorite phrases is to call adjustable wrenches and channel locks (slip groove or tongue and groove pliers) “shoemakers tools”. I literally have no idea WHY he would call them that, or why he thought it was so funny to call them that but he certainly didn’t mean it as a compliment.

It is usually best to use a properly sized socket or wrench to do a job rather than reaching for a “multi-purpose” wrench, but every tool has a purpose and if you are going to use a tool it’s best to use it properly. I know this is basic, but we cant assume everyone has a grandpa like mine.

Pull Don’t Push (When You Can)

Whenever possible orient the wrench so that you are pulling rather than pushing (Yes, I know I’m awkwardly pushing in the GIF below) . This is a much more smooth and natural motion and you will be able to apply more force.

Pipe Wrenches are Special

A pipe wrench is only for working with pipe, NOT nuts, and bolts. I know this should be obvious but I worked with a guy once who treated a pipe wrench like a regular wrench and left a lot of damaged bolt heads in his wake.

A pipe wrench has sharp, angled teeth that will grip in one direction and release in the other direction. Open the jaw wide enough that the pipe sits in about the center of the pipe wrench unlike a typical where the object to be turned sits all the way in the back of the jaws.

Keep in mind that a pipe wrench will leave marring on the surface of the pipe, if you don’t want it to be damaged you can use a leather (or even rubber) strap around the pipe to protect it before using the wrench. A leather belt can do the trick.

Turn the Wrench Toward the Bottom Jaw

Maybe there is an exception to the rule, but not in any of my wrenches. If you turn the wrench toward the bottom jaw they will grip properly and be less likely to slip. In order to tighten vs. loosen just flip the wrench over and turn the opposite direction

Righty Tighty is Annoying

Half my childhood was HAUNTED by the phrase righty tighty, lefty loosey. IT IS ROUND! there is no right or left unless it is a reference to another direction (the top). It’s better said as clockwise tighty… and yes, I know that doesn’t sound cool.

— Bryan

 

 

 

 

 

Like we often do in these tech tips, we will start with the common and more practical explanation of saturation and then move to the more technical and nerdy explanation later.

When we say “at saturation” or “saturated” in the HVAC/R trade we are generally referring to refrigerant that is in the process of changing from liquid to vapor (boiling) in the evaporator or vapor to liquid (condensing) in the condenser.

We generally look at a set of gauges or find the temperature on a PT (Pressure – Temperature) chart that matches a particular refrigerant and pressure and we call that the saturation temperature.

So when a tech connects gauges to the liquid line (high side) of a system and they look at the needle they will refer to the pressure in PSI and the temperature for the particular refrigerant as saturation temperature. On the gauge above the refrigerant in the system is R22 (green scale) they would say that the pressure is 200 PSI and the saturation temperature is 102°F.

To be even more specific, a tech might say that the condensing temperature of this system is 102°F because the saturated state is occurring during the process of condensing in this particular case.

From a practical standpoint in a refrigeration circuit when we say saturation we are referring to –

the pressure and temperature a refrigerant will be if both liquid and vapor are present at the same time and place

One of the most common cases where we will see refrigerant at saturation is inside systems that are off as well as inside a refrigerant tank. If you were to connect a gauge to tank (like this Testo 550 shown) the refrigerant pressure inside the tank will be equal to the pressure that correlates to the saturation temperature of the tank (I know that’s a mouth full but it’s really pretty simple).

In the case of the refrigerant shown above the room temperature is 71.9°F and the refrigerant is R-422D. All I had to do was connect the Testo 550 and select R422D and the saturation temperature (show above the psi on the right) is EXACTLY 71.9°F. In this case, we can say the saturation PRESSURE of R422D is 136.8 PSI at 71.9°F or that the saturation TEMPERATURE is 71.9°F at 136.8 PSI.

Either way, what are saying is that there is both liquid and vapor present inside the tank so it is at SATURATION or in the saturated state if you would rather. So as techs we see refrigerant at saturation pressure and temperature when the system is off, inside a tank and when it is in the midst of boiling in the evaporator or condensing in the condenser.

Now for the more in-depth explanation

I will warn you that this is a bit of a beating around bush explanation, but I’m writing the explanation I wish I had been given early on… so be patient young grasshopper.

 

Let’s start with a dictonary definition of saturation –

The state or process that occurs when no more of something can be absorbed, combined with, or added.

So when something is “full” and can hold no more of something it is said to be saturated, like a sponge saturated with water, or air saturated with water vapor or a in this case, a liquid saturated with kinetic energy.

Many (including Wikipedia) will define saturation as the boiling point of a liquid. This definition is correct but can lead to a misunderstanding. Just because a liquid is at its boiling point doesn’t mean it is actively boiling. The refrigerant in an air conditioner is technically at the boiling point when the system is completely off. Refrigerant in a tank is at saturation (so long as it has some liquid in the tank) even though the refrigerant is static (nor flowing).

In nature, gasses (vapor) and liquids are free to move around and interact with one another with the predominant pressure being atmospheric pressure (14.7 psia at sea level).

You may have wondered why water exposed to the air will evaporate even though it has not reached the boiling temperature? This is because the temperature of a substance is the AVERAGE kinetic energy of the molecules in a substance not the specific kinetic energy of every single molecule. While there may not be enough energy for the entire substance to boil, there is enough energy in a few of the molecules to break free from the surface.

This is why when sweat evaporates off of your skin your skin cools. The highest energy molecules are leaving and taking themselves and their high energy ways with them! 

Translation – Some molecules have more energy than others and are able to escape the liquid form out in nature and we call this evaporation. This evaporation can be measured but it happens below the boiling point and when a substance is uncontained it results in less and liquid remaining.

Translation of the Translation – If you leave water out in a pan it will eventually disappear even when it isn’t boiling

Now if you put a liquid in a jar and screw the lid on, some of the molecules will escape the liquid bonds and fill the void in the jar until pretty soon the jar will be at equilibrium (static) pressure with an equal number of molecules condensing back into the liquid as those that are escaping. The more active the molecules in the jar the more pressure there will be in the jar. Since the definition of temperature is the average kinetic energy of the molecules you can translate that as “The hotter the jar the higher the pressure” or “The higher the pressure the hotter the jar”.

Different liquids have a more or less tendency to escape the liquid form (evaporate), liquids that have a very high tendency to escape will evaporate more quickly and have a higher “vapor pressure” and are also said to be more “volatile”. Alchohol or gasoline are liquids that are more volatile and have a higher vapor pressure at atmospheric pressure than water and disappear quickly even when the ambient temperature is below their boiling point.

Some Liquids (like vacuum pump oil for example) have a very low tendency to evaporate and are said to have very low volatility and a low vapor pressure.

Liquids with low boiling temperatures (like most refrigerants) are very volatile and have a higher vapor pressure than liquids that remain a liquid at atmospheric pressure. We know that refrigerant does more than evaporate at atmospheric pressure and normal atmospheric temperature, it literally BOILS.

A liquid boils when the vapor pressure of the liquid matches the atmospheric pressure. At that point the liquid molecules begin to break free rapidly and if they are uncontained they will simply fly away like water vapor out of an open pot.

If the molecules are boiling and contained they will begin increasing the pressure as they boil until the temperature of the liquid no longer increases and it hits equilibrium between the vapor pressure of the liquid and the pressure inside the vessel (tank, pressure cooker etc..).

Once the vessel is allowed to reach a state of perfect equilibrium it may no longer be boiling but it can still be at the boiling point, that exact POINT of equilibrium between vapor pressure and temperature is the SATURATION POINT. 

So long as the pressure remains constant on a boiling or static vapor/liquid mixed substance we can say that it is at saturation temperature because it remains at the same temperature until either

  1. The pressure changes
  2. The substance is fully boiled

But it is important to remember that it is the vapor pressure of a liquid substance being equal to the pressure around it that results in saturation and then boiling or in the opposite direction, condensing.

Also… Evaporators should be called boilerators but I’m doing being nerdy for now.

— Bryan

 

 

 

 

If you are used to simple, straight cool split systems you know that the low voltage to the outdoor unit is usually VERY simple with just a Y (contactor power) and a C (common) connected to the outdoor unit in many cases. When the condensing unit controls are strictly two wire low voltage there is no continuous low voltage power so there is also no timers or other logic in the condensing unit. Usually, in these cases, the LV wires connect directly to the contactor coil.

A heat pump needs to be able to switch between heat and cool and defrost which brings in the necessity for more control conductors and complexity.

A heat pump defrost board like most modern controls contain both loads and switches to control different functions.  because it has timers and some basic “logic” the board requires a power supply and for most residential split system boards this power comes from the C (common) and R (hot) terminals from the indoor 24v transformer.

The defrost board also utilizes the constant power on the defrost board R terminal to backfeed voltage through the W2 wire back to the secondary heat inside whether it be heat strips, furnace or hydronic secondary heat.

This helps to counteract the cooling effect that occurs when the heat pump when it shifts from heat to cool mode for defrost. This function is an important thing to test on heat pumps to reduce cold draft complaints during the winter.

Simply force the board into a defrost and check for 24v between w2 and c at the outside board to confirm proper operation or check the secondary heat via ammeter or visual confirmation during the defrost cycle.

— Bryan

Scroll to top
Translate »

Daily Tech Tip

Get the (near) daily Tech Tip email right in your inbox!
Email address
Name